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Abstract

A method is proposed for ®tting a `ramp' to measured data. This is a continuous function, segmented in three
parts: x fit�t� � x1 for tRt1, x2 for trt2, and linearly connected between t1 and t2. Its purpose is to measure

transitions in the mean of time series as they occur, for example, in paleoclimatic records. The unknowns x1 and x2
are estimated by weighted least-squares regression, t1 and t2 by a brute-force search. Computing costs are reduced
by several methods. The presented Fortran 77 program, RAMPFIT, includes analysis of weighted ordinary residuals

for checking the validity of the ramp form and other assumptions. It ®ts an AR(1) model to the residuals to
measure serial dependency; uneven time spacing is thereby allowed. Three bootstrap resampling schemes
(nonparametric stationary, parametric, and wild) provide uncertainties for the estimated parameters. RAMPFIT

works interactively (calculation/visualization). Example time series (one arti®cial, three measured) demonstrate that
this approach is useful for practical applications in geosciences (n less than a few hundred, noise, unevenly spaced
times), and that the ramp function may serve well to model climate transitions. # 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Accurately quantifying past transitions is one prere-

quisite for a better causal understanding of climatic

change. Given a time series x�i � measured at times

t�i �, i � 1, . . . , n, which documents a transition in the

mean, it is important to know: when did the transition

start? When did it end? What were the levels of the
mean before and after the transition? These questions

lead ultimately to the three-phase regression model
which is shown in Fig. 1. We denote it a `ramp func-
tion'.

As physical motivation for the ramp form, consider
a (climate) system at equilibrium which is disturbed by
some external action over a period of time, then attain-

ing a new equilibrium state.
The mathematical problem is to ®t the ramp func-

tion,

x fit�t� �
8<:x1, fortRt1,
x1� �tÿ t1��x2ÿ x1�=�t2ÿ t1�, fort1RtRt2,
x2, fortrt2,
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to x�i �; that is, to estimate the parameters t1, x1, t2,
and x2 for the regression model

x�i � � x fit�i � � E�i � �1�
where x fit�i �: � x fit�t�i �� is an abbreviation for the dis-

crete form. We assume E(i ) to be distributed as
N�0, s�i �2�, since for climate time series we anticipate
heteroscedasticity. We further allow positive AR(1)
dependency between the E(i ) since persistence is also

typical for such time series. The two points of nondif-
ferentiability (Fig. 1) cause the main di�culty, in that
they prevent us from formulating the normal equations

for a least-squares (LS) estimation of t1 and t2.
The proposed estimation method and the respective

Fortran 77 program RAMPFIT are a pragmatic

approach to that regression problem. By a brute-force
search over a pre-de®ned grid, we ®nd tÃ1 and tÃ2,
whereas we calculate xÃ1 and xÃ2 directly by using a

weighted LS criterion.
The computational burden for that approach is

reduced by several approaches. First, interactive
graphics (for smoothing and time interval evaluation)

allow us to keep the boundaries of the search grid
narrow. Second, an intelligent search path on the grid
permits updating of values of constants rather than

new evaluation. Third, the search grid is as coarse as
the time values t�i � are.
Section 2 explains the estimation method and also

mentions possible extensions and alternatives. Section
3 demonstrates the analysis of the regression residuals
which helps to assess whether the ramp function is
indeed suited to the investigated data. Section 4

supplies three bootstrap resampling schemes for deter-
mining the uncertainties of the estimated parameters.
Whereas an arti®cial time series serves to exemplify

those theoretical Sections, measured data (Section 5)
make clear that ramp function regression is of practical
meaning for many types of time series encountered in

the geosciences. The Appendix gives a short manual of
RAMPFIT.

2. Ramp function estimation

2.1. Weighted LS

Since the standard deviation s(i ) can vary with time,
we use a LS criterion which puts heavier weights on
values with smaller s(i ). The best ramp function ®t to

given data x�i � thus minimizes

SSQW�t1, x1, t2, x2� �
Xn
i�1
�x�i � ÿ x fit�i ��2=s�i �2:

We may either know s(i ) a priori, or estimate it per
eye with the help of smoothing (Subsections 2.3 and
3.3). We seek the solution �t̂1, x̂1, t̂2, x̂2� for which

SSQW�t̂1, x̂1, t̂2, x̂2� is a minimum.
First, consider the case where t1search � t�i1� and

t2search � t�i2� are ®xed. Then we ®nd xÃ 1 and xÃ 2 by

putting

@=@x1 �SSQW�t1search, x1, t2search, x2���! 0

and

@=@x2 �SSQW�t1search, x1, t2search, x2���! 0:

This yields

x̂2 �
�
K3K4

K1
� K6

�
=

�
K2K4

K1
� K5

�
�2�

and

x̂1 � �K3 ÿ x̂2K2�=K1: �3�
The constants are:

K1 � k2 � �t1searchk4 ÿ k5�=�t2search ÿ t1search�,

K2 � k3 ÿ �t1searchk4 ÿ k5�=�t2search ÿ t1search�,

K3 � k8,

K4 � k1 � �t2search�t1search � t2search�k4 � 2k6 ÿ �t1search

� 3t2search�k5�=�t2search ÿ t1search�2,

K5 � k3 � �t1search�t1search � t2search�k4 � 2k6 ÿ �3t1search

� t2search�k5�=�t2search ÿ t1search�2,

K6 � k9 ÿ k7 ÿ 2�t1searchk10 ÿ k11�=�t2search ÿ t1search�,
andFig. 1. Ramp function regression model.
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k1 �
Xi1
i�1

1=s�i �2, k2 �
Xi2ÿ1
i�1

1=s�i �2,

k3 �
Xn
i�i2

1=s�i �2, k4 �
Xi2ÿ1

i�i1�1
1=s�i �2,

k5 �
Xi2ÿ1

i�i1�1
t�i �=s�i �2, k6 �

Xi2ÿ1
i�i1�1

t�i �2=s�i �2,

k7 �
Xi2ÿ1
i�1

x�i �=s�i �2, k8 �
Xn
i�1

x�i �=s�i �2,

k9 �
Xn
i�i2

x�i �=s�i �2, k10 �
Xi2ÿ1

i�i1�1
x�i �=s�i �2,

k11 �
Xi2ÿ1

i�i1�1
x�i �t�i �=s�i �2:

2.2. Brute-force search

Since the ramp function (Fig. 1) is not di�erentiable

with respect to time at t1 and t2, we cannot derive tÃ1
and tÃ2 in the same manner as xÃ1 and xÃ2. Instead, we
search over all points of a t1±t2 grid (Fig. 2). The
knots of this grid are determined by the time values

t�i � and the restriction t1search < t2search. For every
search point, we calculate xÃ1, xÃ2, and SSQW.
The search starts in the upper left corner of the grid

(Fig. 2) where constants k1 ÿ k11 have to be calculated

explicitly. An intelligent path then permits updating of
the values of the constants rather than new evaluation

(Table 1 in Mudelsee, 1999, Technical Report UKC/
IMS/99/10). This reduces the computing costs by a fac-
tor of about 2.

We prescribe the boundaries of the t1±t2 search
grid. They have to be broad enough to reduce the
possibility of a solution on the grid boundary. In such

a case it would be likely that a better ®t solution exists
outside the grid. On the other hand, the grid bound-
aries have to be narrow enough to keep computing

costs small. The computer program RAMPFIT helps
to suit the search boundaries by means of interactive
graphics (smoothing).
The coarseness of the search grid, that is, the spa-

cing of the t�i �, limits the precision of tÃ1 and tÃ2.
However, when the uncertainties of tÃ1 and tÃ2 (which
are determined by bootstrap resampling, see Section

4) are larger, that limitation becomes unimportant.
The brute-force search, despite its computational bur-
den and its tedious appearance, has the advantage of

providing a global optimal solution within the search
grid.

2.3. Standard deviation

The time-dependent standard deviation provides
the weights for the LS regression. If no prior knowl-

edge (e.g., measurement error) is available, we have
to estimate s(i ). We assume also s(i ) to have a
ramp form. This is motivated by the de®nition of cli-
mate not only in terms of mean value but also in

terms of variability. A climate change therefore may
consist of a ramp function change of standard devi-
ation.

RAMPFIT allows us to ®t s(i ) per eye. Within a
running window, the standard deviation of the data is
calculated. Interactive graphics and an adjustable

degree of smoothing facilitate the estimation (Subsec-
tion 3.3 and Appendix A.1).
In principle, it would be possible to carry out a LS

regression of the standard deviation or to use more

complicated functions for s(i ). Since the major interest
in the present context is an appropriate distribution of
the weights, we avoid such extensions.

2.4. Extensions and alternative approaches

My approach of brute-force search is similar to Wil-

liams' (1970) adaptation of Hudson's search to a three-
phase linear regression. He used a search path which
made re-calculation of constants necessary, something

our path (Fig. 2) completely avoids. He further con-
ducted a `®ne estimation' to overcome the coarseness
of the grid.

Fig. 2. Search grid for tÃ1 and tÃ2: search points (*), search

steps (arrows), and 1:1 line (heavy).
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One possible alternative to brute-force search is

numerical minimization of SSQW�t1, x1, t2, x2�
which also would provide a `®ne estimation'. A nu-

merical technique without derivative calculation,

such as Brent's search in two dimensions, would be

necessary. The solution, however, would only be a

local minimum. Typical questions such as choice of

starting point and stopping rule would arise. Fur-

thermore, updating of constants which reduces com-

puting costs would not be possible.

Since we allow AR(1) dependency between the

errors E(i ), generalized LS estimation could be a

useful extension, especially for a strong dependency.

In addition to s(i ), the serial correlation would

have to be determined. Note that because of the

bootstrap resampling, correlated errors do not dis-

tort evaluated uncertainty ranges of estimated par-

ameters.

We consider robust regression to be a less helpful

extension. The simple calculation of xÃ1 and xÃ2 by

LS minimization (Eqs. 2 and 3) would not be poss-

ible. Most climate time series seem not to depart so

strongly from the Gaussian shape that would justify

such a complication.

The statistical literature to `change-point detection'

indicates alternative approaches to ramp function re-

gression. For example, we could use tests for an

abrupt change in the mean (see, e.g., Basseville and

Nikiforov, 1993) to estimate t1 `from the left' (Fig.

1) and t2 `from the right'. However, when a signi®-

cant number of time series points lie between t1

and t2, that approach looses considerable power.

It might be interesting to adapt the approach of

Tishler and Zang (1981) and approximate x fit�t� by a

continuously di�erentiable function in some arbitrarily

small neighborhood of t1 and t2. That smooth re-

gression model could then be estimated by numerical

techniques with derivative calculation. Similar ques-

tions to the above would arise, and updating would
not be possible.

We ®nally mention change-point detection by non-
parametric regression (MuÈ ller, 1992).

2.5. Computing costs

Costs not only depend on the number of data
points, n, and the number of grid search points (Fig.
2), say nsearch, but also on the proportion of data

points between t1 and t2 because in that interval evalu-
ation of constants is more expensive. The costs to cal-
culate k1±k11 for one search point are roughly
proportional to n whereas updating costs for all search

points are roughly proportional to nsearch. Thus, for
smaller values of n=nsearch, numerical minimization
which requires calculation only at a small number of

search points, is an interesting alternative.
Costs further are determined by the type of machine

and compiler. The following numbers are based on

RAMPFIT test calculations with a PC with 80486-50
DX processor and the Microsoft Fortran PowerStation
1.0 compiler, and a Sunsparc workstation with
143 MHz clock and the EPCF77 2.7 compiler. They

should be seen as a rough guideline.
For n = 500, the CPU time per search point is

about 150 ms on the work-station, for n = 300 about

50 ms, and for n=100 about 18 ms. The PC was about
100 times slower.

3. Residual diagnostics

We have made the following assumptions for the
ramp function regression:

1. The errors E(i ) are Gaussian distributed.
2. The errors have time-dependent standard deviation

s(i ), that is, the weighting is appropriate.

Table 1

Analyzed time seriesa

Name Description Time interval n V

Arti®cial t1=200, x1=2.0 [0; 499] 500 0.21

t2=300, x2=4.0

s(t )=1.0 (tR 250)

s(t )=0.5 (t>250)

a=0.40

ODP 925 d 18O [per mil vs PDB], benthic foraminifera [500 ka; 1400 ka] 429 0.79

87-Sr/86-Sr 87-Sr/86-Sr, various cores, planktonic foraminifera [2.0 Ma; 8.8 Ma] 65 1.94

ODP 929 y d 18O [per mil vs PDB], benthic foraminifera [23.4 Ma; 23.8 Ma] 70 0.17

ODP 929 o d 18O [per mil vs PDB], benthic foraminifera [23.7 Ma; 24.6 Ma] 150 0.16

a Time units refer to years before present. V is the coe�cient of variation of the time spacing, that is, the standard deviation

divided by the average. The ODP 929 time series has been split into a young (`y') and an old (`o') part.
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3. The relationship between x and t is indeed a ramp
function.

4. The errors show AR(1) dependency (that is not too

strong).

Analysis of regression residuals is an important tool
for assessing how well these assumptions are ful®lled.

For an excellent treatment of that subject refer to
Montgomery and Peck (1992, Ch. 3). In the present
study, an arti®cial time series with distinct transition in

the mean (Fig. 3 and Table 1) illustrates residual
analysis.

3.1. Weighted ordinary residuals

The weighted ordinary residuals are calculated as

e�i � � �x�i � ÿ x̂fit�i ��=ŝ�i �
where x̂fit�i � is the ramp function ®tted by brute-force
search and LS minimization, and ŝ�i � is the standard

deviation ®tted per eye. Given the uncertainty of the
latter ®t, we regard it unnecessary to furthermore stu-
dentize e�i �:

3.2. Gaussian shape

A histogram of the e�i � (Fig. 4) is the ®rst visual
tool for examining a Gaussian shape. We follow Scott

(1979) and use the number of classes

NINT��emax ÿ emin �n1=3=3:49estd ��
where NINT( ) is the nearest integer function; and

emax, emin, and estd are, respectively, maximum, mini-
mum, and standard deviation of e�i �:
Fig. 5 shows the normal probability plot, Fÿ1��iÿ

1=2�=n� vs e�i � (where Fÿ1 is the inverse cumulative nor-

mal function and e�i � are the ranked residuals); the
Gaussian shape appears as a straight line, especially in
the crucial central part of the plot. RAMPFIT uses the

approximation of Hamaker (1978) to Fÿ1.
A stronger violation of the Gaussian assumption

would necessitate more robust measures than LS re-

gression.

Fig. 3. Ramp function ®t (heavy line) to arti®cial time series

(Tables 1 and 2). Grid boundaries for t1-search (dashed verti-

cal lines) and t2-search (solid).

Fig. 4. Histogram of weighted ordinary regression residuals,

arti®cial time series.

Fig. 5. Normal probability plot of weighted ordinary re-

gression residuals, arti®cial time series.

Fig. 6. Per-eye ®t (heavy line) of s(i ), and standard deviation

(smoothed) of detrended values (light line), arti®cial time

series. Smoothing window contains 50 points.
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3.3. Appropriate weighting

In Fig. 6, ŝ�i � (®tted per eye) is plotted together

with the standard deviation of the detrended values,
�x�i � ÿ x̂fit�i ��: Their standard deviation is calculated
within a window which contains a ®xed number of

points and which is shifted on the time axis (k-nearest-
neighbor smoothing). The assigned time value is the
average of time values contained in the window
(Tukey, 1977). That is more precise since, for climate

time series, we expect uneven time spacing. RAMPFIT
facilitates comparison with ŝ�i � by permitting the
choice of the degree of smoothing. RAMPFIT also

gives the values of reduced chi-square,

SSQWN � SSQW�t̂1, x̂1, t̂2, x̂2�=�nÿ 4�,
which Ð in the case of independent E(i ) Ð should be

around unity for an adequate ®t to x�i � and a proper
guess of s(i ) (see, for example, Bevington and Robin-
son, 1992, Ch. 11). In the situation of strong depen-

dency, SSQWN is no longer useful, and, also, the
smoothed standard deviation is then lower than the
true. (The example of the arti®cial time series (Table 2
and Fig. 6) indicates that an autocorrelation coe�cient

of 0.4 is not a strong dependency in that respect.)
Note that this underestimation would be a roughly
constant percentage over time, provided the coe�cient

of variation of the time spacing is small. Thus, the
underestimation would not corrupt the appropriate
distribution of the weights.

3.4. Suitable ramp model

The plots of e�i � vs t�i � (Fig. 7) and e�i � vs x fit�i �
(Fig. 8), together with the ®t (Fig. 3), help to identify
outliers or systematic deviations from the assumed
ramp form. In the case of the arti®cial time series with

a pre-de®ned ramp transition, as expected, we observe
no such behavior: the points are homogeneously dis-
tributed.

3.5. Weak AR(1) dependency

We inspect AR(1) dependency between errors by

means of a lag-1 scatterplot of e�i � (Fig. 9). The orien-
tation of the cloud of points along the 1:1 line indi-
cates a positive correlation. We quantify that

dependency by ®tting the stationary time series model

e�i � � a�t�i �ÿt�iÿ1��e�iÿ 1� � �1ÿ a2�t�i �ÿt�iÿ1���0:5u�i � �4�
to the residuals where the u�i � are assumed to be inde-

pendent and identically distributed as N�0, 1�: This
model is a generalization of an AR(1) model to dis-
crete data with an uneven time spacing. Estimation (aÃ )

is carried out using a LS criterion and numerical tech-
niques. RAMPFIT also gives the estimated value of
t=ÿ1/ln(a ) which is the decay period of the autocor-
relation function of the AR(1) model. My approach is

similar to, amongst others, Robinson's (1977).
In the example of the arti®cial time series, we esti-

mate aÃ=0.41, that is, approximately the true serial

correlation. It would be di�cult to evaluate the bias
and the variance of estimator aÃ analytically. Despite
that, aÃ serves well for judging whether the dependency

between the errors is weak enough to circumvent a

Table 2

Results: ramp function ®tsa

Name tÃ1 xÃ1 tÃ2 xÃ2

Arti®cial 208.1210.1 1.8120.08 283.826.9 3.9820.04

ODP 925 918.7213.2 3.4020.03 931.8214.1 3.0320.03

87-Sr/86-Sr 4.3920.12 7090.3020.06 5.6620.18 7089.2720.06

ODP 929 y 23.61520.024 1.2820.03 23.72620.027 1.8220.07

ODP 929 o 23.75620.027 1.8820.08 24.01020.018 0.8920.02

a Given errors are mad ', using the nonparametric stationary bootstrap scheme (Subsection 4.1). In case of the 87-Sr/86-Sr time

series, the x-values have been multiplied by 104.

Fig. 7. Weighted ordinary regression residuals vs time, arti®-

cial time series.
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generalized LS estimation, and whether SSQWN is a

useful quantity (see Subsection 3.3).
Strictly speaking, we do not test whether the depen-

dency is indeed ®rst-order autoregressive which, for

unevenly spaced time series, would be a formidable
task. This omission should be justi®ed in case of cli-
mate time series (`natural persistence').

4. Bootstrap resampling

After we have ®tted a ramp function and Ð assisted

by the residual plots Ð accepted that model for a par-
ticular climate time series, geological interpretation of
the ®t result requires knowledge about how close the

estimated parameters are to the true parameters. Those
biases and uncertainties of tÃ1, xÃ1, tÃ2, and xÃ2, we esti-
mate by bootstrap resampling: from the original time

series x�i �, we draw a ®rst sample x�i ��� j � 1� that is
intended to have the same statistical properties; three
methods of doing so are described in this Section. A
ramp function is ®tted to x�i ��� j � 1�, resulting in

t̂1�� j � 1�, x̂1�� j � 1�, t̂2�� j � 1�, and x̂2�� j � 1�:
Resampling and ®tting is repeated, B times in total.

The distributions of t̂1�� j �, x̂1�� j �, t̂2�� j �, and x̂2�� j �
then inform about biases and uncertainties.
Following Efron and Tibshirani (1993) in their excel-

lent monograph on the bootstrap, we use B = 200.
With regard to CPU time and coarseness of estimation
�t1±t2 grid), a higher number of replications would

make no sense. The search grid (Fig. 2) remains
unchanged.
The more traditional approach for estimating uncer-

tainties, via the second derivative of SSQW, is not ap-
plicable since the ramp function is not continuously
di�erentiable. The numerical minimization technique
(Subsection 2.4), however, can use that approach.

4.1. Nonparametric stationary bootstrap

The nonparametric stationary bootstrap (Politis and
Romano, 1994), adapted to heteroscedasticity, uses the
set fe�k�; k � 1, . . . , ng of regression residuals for

resampling:

x�i �� � x̂fit�i � � ŝ�i �e�i ��, i � 1, . . . , n,

where e(1)� is picked at random from fe�k�g: The other
e�i �� are derived as follows. Let e�i �� � e�l �, say.
Then:

e�i� 1�� �

8>><>>:
with probability p:
e�l� 1� or, if l � n, e�1�,
with probability 1ÿ p:
picked at random from fe�k�g:

The e�i �� consist of blocks of variable length which
preserve a sub-chain of the e�i �: That recognizes event-
ual autocorrelation of the E(i ). The probability p has
to be prescribed. RAMPFIT suggests a value for

Fig. 8. Weighted ordinary regression residuals vs x®t, arti®cial

time series. (Because of ramp form, clusters of points at xÃ1

and xÃ2 emerge.)

Fig. 9. Lag-1 scatterplot of weighted ordinary regression re-

siduals (arti®cial time series), 1:1 line.

Fig. 10. Histogram of t̂1�� j �, nonparametric stationary boot-

strap, arti®cial time series. Vertical, dashed line (with stars)

marks tÃ1. Crossed, solid lines mark med�t̂1�� j ��2mad 0�t̂1�� j ��:
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which the average block length becomes equal to the
estimated autocorrelation decay period t̂:
In the histogram of t̂1�� j � 1, . . ., B � 200� (Fig.

10), the ®t value, tÃ1, is marked. Also the median,
med�t̂1�� j ��, is drawn with error bars2mad 0�t̂1�� j ��
where mad 0: � 1:4826mad: The mad is the median of
absolute distances to med; a normal distribution has
standard deviation 2mad '. For comparison with tÃ1, we

prefer those robust measures which are also meaning-
ful for heavier skewed distributions. Fig. 10 reveals
that tÃ1 has negligible bias. Furthermore,

mad 0�t̂1�� j �� � 10:1 is clearly larger than the average
spacing (1.0) of the time series within the t1 search
region, justifying the coarse t1±t2 grid. In addition to
med and mad ', RAMPFIT also calculates the average,

standard deviation, minimum, and maximum; the same
also applies for x̂1�� j �, t̂2�� j �, and x̂2�� j �: The two
other bootstrap schemes are dealt with similarly.

4.2. Parametric bootstrap

The parametric bootstrap resamples x�i ��� j � after
Eq. (1):

x�i �� � x̂fit�i � � ŝ�i �v�i �, i � 1, . . . , n,

where x̂fit�i � is the estimated ®t function, ŝ�i � is the

estimated standard deviation, and the v�i � are distribu-
ted as N�0, 1� with the AR(1) correlation in Eq. (4).
For generating the random numbers, RAMPFIT

uses the algorithm of Park and Miller (1988) in combi-
nation with routine Gasdev from Press et al. (1992).

4.3. Wild bootstrap

The wild bootstrap of HaÈ rdle and Marron (1991),
adapted to heteroscedasticity, resamples as

x�i �� � x̂fit�i � � ŝ�i �e�i �w�i �, i � 1, . . . , n,

where w�i � is the two-point distribution,

w�i � �
�

with probability r: w1,
with probability 1ÿ r: w2,

with r � � 5
p � 1�=�2 5

p �, w1 � �1ÿ 5
p �=2, and w2 �

�1� 5
p �=2: The wild bootstrap attempts ``to recon-

struct the distribution of each residual through the use
of one single observation'' (HaÈ rdle and Marron, 1991).
This resampling scheme, in contrast to the two others,

preserves no dependency between the residuals.
The question of which of the resampling schemes

may be most adequate for ramp function regression

has to be pursued further, for example, by means of
Monte Carlo simulations. At present, I conjecture that
eventual deviations from Gaussianity or AR(1) depen-

dency are best preserved by the nonparametric station-
ary bootstrap.
An eventual important addition to RAMPFIT

would be the incorporation of a scheme which also

resamples the time t�i �: An uncertain timescale is most
common for paleoclimatic time series. It may, how-
ever, be necessary to develop a statistical model for the

t�i �:

5. Examples

After having tested ramp function regression, re-
sidual analysis, and bootstrap resampling for an arti®-

cial time series, we investigate three measured marine,
paleoclimatic time series. Table 1 describes the data
sets and Tables 2 and 3 present the results. As error
bars, we use 2mad ' from the nonparametric stationary

bootstrap. The results from the other schemes, as well
as the bootstrap histograms and scatterplots, (as in
Fig. 11) can be found in Mudelsee (1999, Technical

Report UKC/IMS/99/10).

Table 3

Results: standard deviation and AR(1) ®tsa

Name ŝ AR(1) ®t

tÃ1s xÃ1s tÃ2s xÃ2s SSQWN aÃ t̂

Arti®cial 250.0 0.90 250.0 0.50 1.08 0.41 1.1

ODP 925 650.0 0.45 1000.0 0.35 1.02 0.81 4.6

87-Sr/86-Sr (measurement error) (1.72) 0.00

ODP 929 y 23.5 0.16 23.6 0.20 1.18 0.00

ODP 929 o 0.19 (constant) 1.06 0.00

a tÃ1s, xÃ1s, tÃ2s, and xÃ2s are the ramp function parameters for

ŝ (cf Fig. 1).

Fig. 11. Scatterplot (correlation) between t̂1�� j � and t̂2�� j �,
nonparametric stationary bootstrap, arti®cial time series.

Crossed, dashed lines (with stars) mark tÃ1 and tÃ2, respect-

ively.
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5.1. ODP 925

The ODP 925 d 18O record (Bickert et al., 1997)

documents growth and decay of Northern Hemisphere
ice mass. High d 18O values mean large ice mass. It
contains the Mid-Pleistocene Transition (MPT), a rela-

tively sudden increase in mean ice mass at around 920
ka before present (BP) which led to Late Pleistocene
ice ages (see Mudelsee and Stattegger, 1997, Table 1

for further references). For ®t region, we choose the
same time interval, [500 ka; 1400 ka], as Mudelsee and
Stattegger (1997) for other records.
The ramp function ®t (Fig. 12, Table 2) con®rms

timing and abruptness of the MPT. The estimated
d 18O step agrees with results from other records. The
location of the ODP 925 drill hole (tropical W-Atlan-

tic) adds further evidence that the MPT was a global
climate phenomenon. Residual analysis (Fig. 13)
attests that made assumptions are valid and the ramp

form is suited. Dependency between the e�i � is con-
siderably strong (aÃ=0.81) which may be due to harmo-
nic components (Milankovitch frequencies of Earth
orbital parameter variations). That deviation from

AR(1) dependency should make the nonparametric
bootstrap (we take p = 0.7) the most reliable scheme.
However, all three resampling methods reveal nearly

zero bias of estimated parameters and no correlation
between them (exception: t̂1�� j � < t̂2�� j ��: Estimated
parameter uncertainties (Table 2) roughly agree with

those of previous quanti®cations of the MPT on other
records (Mudelsee and Schulz, 1997; Mudelsee and
Stattegger, 1997). The estimated uncertainties of tÃ1 and

tÃ2 are about 7±10 times as large as the average spa-
cing, justifying the coarse search grid.

5.2. 87-Sr/86-Sr

The 87-Sr/86-Sr record (Hodell et al., 1989), con-

structed from various marine sedimentary cores, docu-
ments the geochemical cycling of strontium in the late

Neogene ocean which is related to processes such as
chemical weathering of the continents, hydrothermal
circulation at mid-ocean ridges, and carbonate dissol-

ution on the sea¯oor. Hodell et al. ®tted a ramp func-
tion per eye (tÃ1=4.5 Ma, xÃ1=0.709025, tÃ2=5.5 Ma,
xÃ2=0.708925) and concluded that the 87-Sr/86-Sr

record additionally o�ers considerable potential as a
stratigraphic tool for the transition interval. At s(t ) we
overtake the reported measurement errors. (Per-eye ®t

of the standard deviation gave similar results.)
The ramp function regression carried out with

RAMPFIT (Fig. 14, Table 2) con®rms the ®ndings of
Hodell et al. Residual analysis (Fig. 15) attests that

made assumptions are valid and the ramp form is sui-
ted. There is no dependency between the e�i �, and all
three resampling schemes reveal the following similar

results: negligible biases for the estimated parameters
and minor correlation between them. The estimated
uncertainties of tÃ1 and tÃ2 (Table 2) are about as large

as the average spacing, which seems to be still accepta-
ble.

5.3. ODP 929

The ODP 929 d 18O time series (Zachos et al., 1997)
from the tropical W-Atlantic is a high-resolution
record of Global Change over the Oligocene/Miocene

boundary. Climate was moderately warm but punctu-
ated by episodes of global cooling. The ®rst and largest
such episode is Mi-1, at around 23.8 Ma BP. The

ODP 929 record mainly re¯ects changes in bottom
water temperature (signal proportion > 2/3 (J.C.
Zachos, pers. comm., 1998)), which enables us to
quantify the Mi-1 event. High d 18O values mean low

temperature. We use the same time interval, [23.4 Ma;
24.6 Ma], as Zachos et al. (1997: Fig. 1B) for analyzing
Mi-1.

A single ramp function would not provide an ade-
quate model for this data. This can be seen directly
from Fig. 16 and would also be revealed by residual

analysis. Instead we ®t two ramps, the older transition
corresponding to initial, strong cooling, the younger to
the following, minor warming (Fig. 16, Table 2). Re-
sidual analysis for the old part (Fig. 17) generally con-

®rms the ramp form. However, the Gaussian
assumption is eventually violated. Likewise, the re-
gression model cannot be rejected for the young part

(Fig. 18). But, a good alternative might be a harmonic
model for the mean which would describe the Mi-1
event as part of a 400 ka Milankovitch cyle, see also

Zachos et al. (1997). Bootstrap resampling does not in-
dicate estimation bias, except perhaps of minor degree
of xÃ1 and xÃ2 in the old part. For both parts the esti-

Fig. 12. Ramp function ®t (heavy line) to ODP 925 time series

(Tables 1 and 2). Grid boundaries for t1-search (dashed verti-

cal lines) and t2-search (solid).

M. Mudelsee / Computers & Geosciences 26 (2000) 293±307 301



mated uncertainties of tÃ1 and tÃ2 are about 3 times as
large as the average spacing.

6. Conclusions and summary

A method is presented accompanied by a Fortran 77
computer program (RAMPFIT), for ®tting a ramp
function (Fig. 1) to measured paleoclimatic time series.

. A brute-force search over a grid (Fig. 2) estimates t1
and t2, whereas a weighted LS estimation provides
xÃ1 and xÃ2. An intelligent search path reduces costs.

Further, RAMPFIT's interactive graphics facilitate
keeping the grid boundaries narrow. The example
time series (one arti®cial, three measured; n R 500)

Fig. 13. Standard deviation ®t and residual analysis for ODP 925 time series (Tables 1 and 3).

Fig. 14. Ramp function ®t (heavy line) to 87-Sr/86-Sr time

series (Tables 1 and 2). Grid boundaries for t1-search (dashed

vertical lines) and t2-search (solid).
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show the practicability of this approach in terms of computing costs and precision of the solution: esti-

mated parameter uncertainties were greater than the

grids were coarse.

. s(t ) is ®tted per eye, also as a ramp function. For

the example time series, this seems to be su�cient

for providing approximate weights, including when

dependency is present.

. Interesting extensions/alternative approaches would

be: (1) generalized LS; (2) numerical minimization;

(3) a continuously di�erentiable approximation of

the ramp function, and (4) LS ®tting of s(t ).

RAMPFIT includes an analysis of weighted ordinary

residuals for testing whether made assumptions

(namely Gaussian distribution, appropriate weighting,

model suitability, and only weak AR(1) dependency)

are valid. In the example of the measured climate time

series (Table 1), we found that:

. The deviations from Gaussianity are of only minor

Fig. 15. Standard deviation and residual analysis for 87-Sr/86-Sr time series (Tables 1 and 3).

Fig. 16. Two-fold ramp function ®t (heavy line) to ODP 929

time series (Tables 1 and 2). Grid boundaries for t1-searches

(dashed vertical lines, those for young part border on t-axis)

and t2-searches (solid).
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degree.

. The ramp function proved to be a suitable model.

In one case (ODP 929) its form was too simple and

had to be changed for a two-fold ramp.

. Serial dependency between the e�i � might be strong

in the presence of harmonic components (ODP 925).

RAMPFIT supplies three bootstrap resampling

schemes (nonparametric stationary, parametric, and

wild) for determining the accuracy of estimated par-

ameters.

. For the measured time series, the three schemes pro-

duced similar results. It remains to be investigated

further which resampling scheme is most suitable.

Using one scheme alone should be su�cient. The

nonparametric stationary bootstrap might be favor-

able because it might best tolerate deviations from
Gaussianity or AR(1) dependency.

. An eventual important addition would be the incor-

poration of a scheme which also resamples the time.
. It is recommended that 200 bootstrap replications

(Efron and Tibshirani, 1993) be used. For typical
paleoclimatic time series, this demands computing
power at the Pentium/workstation level.

To summarize, ramp function regression seems to be a
valuable tool for quantifying climate transitions on
measured time series. Such a functional form is not

unusual in the geologic past. Modern computer power
allows practical determination of parameter uncertain-
ties.
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Appendix A. RAMPFIT manual

RAMPFIT, written in Fortran 77, guarantees

high portability. RAMPFIT was tested on a PC
with 80486-50 DX processor under MS-DOS 6.2,

and on a Sun Ultra SPARC 5.5 workstation with

143 MHz clock under Unix V 4.0, but it is
expected to run on other systems as well.

During execution, RAMPFIT regularly calls the

gnuplot program for plotting results of current cal-

culations on the screen; thus a Fortran compiler is
needed which allows external calls. (Microsoft For-

tran Power-Station 1.0 compiler was used for the

PC, and the EPCF77 2.7 compiler for the worksta-
tion.)

A copy of the Fortran code and hints for installa-

Fig. 18. Standard deviation ®t and residual analysis for ODP 929 time series, young part (Tables 1 and 3).
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tion may be requested from the author. Copies of gnu-
plot (version 3.6 or higher) can be obtained from the

internet (for example, FTP directory, 1999).

A1. Part 1: detection

After you have started the program and supplied
path and name of the data ®le (x vs t ), and the total
number of points, RAMPFIT ®rst helps to detect a

transition. It plots the original time series (continue
with `Enter'), and then it displays the Part 1 decision
tree and the Part 1 information. That ®eld informs

about: current time interval and number of points,
and (separately for x and the time spacing) the maxi-
mum, minimum, mean, and standard deviation. The

decision tree allows you to choose a time interval and
perform k-nearest-neighbor smoothing (in x and t
together) for the mean and the standard deviation.

Repeat this until you have a ®rst guess about where
a transition is located and how the time-dependent
mean and standard deviation look. You proceed then
to Part 2 where you take the current time interval for

the regression.

A2. Part 2: regression

To provide the weighting for the regression, you ®rst
prescribe time-dependent standard deviation, either as
a constant or as a ramp. Then you adjust the bound-

aries of the t1±t2 search grid. RAMPFIT calculates
the best ®t and subsequently plots it (see Fig. 3). The
next plot (see Fig. 6) shows ŝ�t� (that is, the prescribed

standard deviation) compared against a k-nearest-
neighbor smoothing of �x�i � ÿ x̂fit�i ��: Then the Part 2
decision tree appears with Part 2 information. That

®eld displays: current time interval, prescribed stan-
dard deviation, t1±t2 search boundaries, and the ®t
result. The latter comprises tÃ1, xÃ1, tÃ2, xÃ2, SSQWN,
and SSQWNS: � SSQWN=�average of ŝ�t��: This quan-

tity helps to compare two ®ts that di�er in ŝ�t�: The
decision tree allows new per-eye ®ts of s(t ) and evalu-
ation of new search boundaries; a new ®t follows each

adjustment. Repeat this until you are convinced of ŝ�t�
and the t1±t2 search grid. You proceed to Part 3 to
analyze the regression residuals. (Alternatively you

may go back to Part 1 to evaluate a new time inter-
val.)

A3. Part 3: residual diagnostics

The residual plots appear in succession: histogram
of e�i � (see Fig. 4), normal probability plot (Fig. 5),

e�i � against time (Fig. 7), e�i � against x fit�i � (Fig. 8),
and e�i � against e�iÿ 1� (Fig. 9). Then the Part 3
decision tree appears, with the Part 2 information

®eld (time interval, ®t result) and the Part 3 infor-
mation ®eld. The latter displays the mean, standard

deviation, and standard error or e�i �, and the result
of the AR(1) ®t, namely the values of t̂ (same units
as t�i �� and aÃ. The decision tree allows you to go

back to Part 1 or 2. This may be necessary for
achieving a properly selected time interval, an accu-
rate ®t to the standard deviation, and a well-

adjusted t1±t2 grid. Part 4, bootstrap resampling,
costs the most CPU time. It is recommended that
the grid boundaries for the t1-search (t2-search) be

centered about tÃ1 (tÃ2) and not be adjusted too mar-
row in order to keep the number of grid boundary
solutions small.

A4. Part 4: bootstrap resampling

The Part 4 decision tree appears with Part 3 infor-
mation (residuals). This ®eld helps to take into

account serial correlation between the e�i �: The de-
cision tree allows you to select among nonparametric
stationary, parametric, and wild bootstrap. Each
scheme demands a choice for the value of B and a

seed for the random number generator. The nonpara-
metric scheme additionally needs a value for p as
input. RAMPFIT suggests a value which is deter-

mined by t̂ (see Subsection 3.5). You may, however,
wish to take a smaller value which would increase the
average block length. The parametric bootstrap

requires input of a value for the AR(1) correlation a;
you may simply use aÃ.
After calculation with a particular resampling

scheme, RAMPFIT gives: tÃ1, average of t̂1�� j �, stan-
dard deviation of t̂1�� j �, median, mad ', minimum,
maximum, number nl of solutions on the left (lower)
search boundary, and number nr of those on the

right boundary; analogously for x1, t2, and x2.
RAMPFIT also gives the results from other schemes,
if such exist. Note that only the most recent results

are stored for each scheme; re-running a scheme will
overwrite its previous results. Now you can visualize
the existing bootstrap results by selecting a scheme, a

®rst variable (t1, x1, t2, x2), and a second variable
(t1, x1, t2, x2, `no'). The value `no' leads to the boot-
strap histogram for the ®rst variable (see Fig. 10), the
other values to bootstrap scatterplots (as in Fig. 11).

You can repeat visualization or go back to the Part 4
decision tree. From there, you may re-run the same
scheme with a new value for B, select one other

scheme, go back to Part 1, 2, or 3, or exit RAMP-
FIT. The latter choice ®rst allows you to change the
mean smoothing and the standard deviation smooth-

ings (for graphical reasons). Finally, RAMPFIT
prints the output ®le names and their respective con-
tent on the screen.
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